
The Mach System

 lecture-27

Distributed Operating System

Some arguments

 Microkernel:
- Is a layered – structure a partial microkernel idea???

- Not so:

- A microkernel is physically divided into separate

modules. It may consist of 1 or more layers – but only

logically.

- A layered kernel is physically divided into layers, but

logically – it might consist of one or more modules.

- A microkernel may be (and often is) logically single

layered because many layered kernel is again a ??

Distributed Operating System

Some Issues

• How do you deal with hardware in UNIX?

– Operating systems provide interfaces and management
of hardware resources

– E.g., interrupts and I/O devices.

• A microkernel seems to optimize operating system design

– So, should make operating system (lower level) easier
to modify

– Layered approach– so, seems good in principle

• Is the UNIX (or other “user application” O/S) really a User
Application?

– Are users going to write additional operating systems?

Distributed Operating System

Solution – Microkernel.

 Microkernel designs put a lot of OS services in separate
processes to build modular operating systems.

 - Kernel’s functionality is reduced and put into user servers.

 This architecture is actually a client-server model.

 - Clients call other OS services through microkernel.

 The central processes that provide the process management,
file system etc are frequently called the servers.

 Microkernels are often also highly multithreaded.

 - Each thread has a different service to perform.

 - What happens with speed of IPC?

Distributed Operating System

What is Mach?

 Mach

◦ Transparent multiprocessing – Avoiding issues in BSD.

◦ Protected message passing – Better than Unix message
messaging.

◦ “extensible” Microkernel

◦ Multiple levels of operating system

 Other O/S’s implemented as “applications”

◦ Basis for NeXT O/S, Mac X O/S, OSF/1

Distributed Operating System

Design Goals of Mach

 Full support for multiprocessing.

 Exploit other features of modern hardware architectures that
were emerging at that time.

 Supports transparent distributed operation.

 Reduce the number of features in the kernel, and therefore
make it less complex, giving the programmer a very small
number of abstractions to work with.

 The abstractions are just general enough to allow several
operating systems to be implemented on top of Mach.

 Full compatibility with UNIX BSD.

 Address the shortcomings of previous systems such as Accent.

Distributed Operating System

Approach:

 - a small, extensible system kernel which provides scheduling,

virtual memory and interprocess communications

 - and several, possibly parallel, operating system support

environments which provide the following two items:

 1) distributed file access and remote execution

 2) emulation for established operating system environments

such as UNIX.

Distributed Operating System

Overall Mach

 IPC – RPC messages.

 - Send and receive.

 When the message queue is

full the senders block; when

it is empty, the receivers

block.

 Indirect communication.

 Heavy weight context

switching.

 Speed is compromised ; but

protection is ensured.

 Portable

 Machine Dependent Layer 0

Layer 1

rec

send

Abstractions

 UNIX

Task’s

address

space

User process

port

Distributed Operating System

Mach’s abstractions
 A task is an execution environment and is the basic unit of

resource allocation.

 - Includes a paged virtual address space (potentially sparse)

 - protected access to system resources (such as processors, port
 capabilities and virtual memory).

 A thread is the basic unit of execution. A thread executes in
the context of a single task. A UNIX Process = Task +
thread.

 A port is a simplex communication channel -- implemented as
a message queue managed and protected by the kernel.

 - Basic object reference mechanism in MACH.

 - Ports are used to refer to objects; operations on objects are
requested by sending messages to the ports which represent them.

Distributed Operating System

Contd..
 A port set is a group of ports, implemented as a queue

combining the message queues of the constituent ports.

 - A thread may use a port set to receive a message sent to any of several

 ports.

 A message is a typed collection of data objects used in
communication between threads.

 - Can by of any size and may contain inline data, pointers to data,

 and capabilities for ports.

 A memory object is a secondary storage object that is mapped
into a task's virtual memory.

 - memory object is treated like any other object.

Distributed Operating System

Differences

 Ports are a protected entity that can only be addressed by the
Mach microkernel,

 Port rights are attached to a given task and describe the
operations that they can provide on a port,

 Port names are the identifiers that tasks must use to request
some operations on this ports.

 This looks similar to - Files, files access rights and file
descriptors in a traditional UNIX system.

Distributed Operating System

ASSIGNMENT

 Q: What is MACH?

Distributed Operating System

