
The Mach System

 lecture-27

Distributed Operating System

Some arguments

 Microkernel:
- Is a layered – structure a partial microkernel idea???

- Not so:

- A microkernel is physically divided into separate

modules. It may consist of 1 or more layers – but only

logically.

- A layered kernel is physically divided into layers, but

logically – it might consist of one or more modules.

- A microkernel may be (and often is) logically single

layered because many layered kernel is again a ??

Distributed Operating System

Some Issues

• How do you deal with hardware in UNIX?

– Operating systems provide interfaces and management
of hardware resources

– E.g., interrupts and I/O devices.

• A microkernel seems to optimize operating system design

– So, should make operating system (lower level) easier
to modify

– Layered approach– so, seems good in principle

• Is the UNIX (or other “user application” O/S) really a User
Application?

– Are users going to write additional operating systems?

Distributed Operating System

Solution – Microkernel.

 Microkernel designs put a lot of OS services in separate
processes to build modular operating systems.

 - Kernel’s functionality is reduced and put into user servers.

 This architecture is actually a client-server model.

 - Clients call other OS services through microkernel.

 The central processes that provide the process management,
file system etc are frequently called the servers.

 Microkernels are often also highly multithreaded.

 - Each thread has a different service to perform.

 - What happens with speed of IPC?

Distributed Operating System

What is Mach?

 Mach

◦ Transparent multiprocessing – Avoiding issues in BSD.

◦ Protected message passing – Better than Unix message
messaging.

◦ “extensible” Microkernel

◦ Multiple levels of operating system

 Other O/S’s implemented as “applications”

◦ Basis for NeXT O/S, Mac X O/S, OSF/1

Distributed Operating System

Design Goals of Mach

 Full support for multiprocessing.

 Exploit other features of modern hardware architectures that
were emerging at that time.

 Supports transparent distributed operation.

 Reduce the number of features in the kernel, and therefore
make it less complex, giving the programmer a very small
number of abstractions to work with.

 The abstractions are just general enough to allow several
operating systems to be implemented on top of Mach.

 Full compatibility with UNIX BSD.

 Address the shortcomings of previous systems such as Accent.

Distributed Operating System

Approach:

 - a small, extensible system kernel which provides scheduling,

virtual memory and interprocess communications

 - and several, possibly parallel, operating system support

environments which provide the following two items:

 1) distributed file access and remote execution

 2) emulation for established operating system environments

such as UNIX.

Distributed Operating System

Overall Mach

 IPC – RPC messages.

 - Send and receive.

 When the message queue is

full the senders block; when

it is empty, the receivers

block.

 Indirect communication.

 Heavy weight context

switching.

 Speed is compromised ; but

protection is ensured.

 Portable

 Machine Dependent Layer 0

Layer 1

rec

send

Abstractions

 UNIX

Task’s

address

space

User process

port

Distributed Operating System

Mach’s abstractions
 A task is an execution environment and is the basic unit of

resource allocation.

 - Includes a paged virtual address space (potentially sparse)

 - protected access to system resources (such as processors, port
 capabilities and virtual memory).

 A thread is the basic unit of execution. A thread executes in
the context of a single task. A UNIX Process = Task +
thread.

 A port is a simplex communication channel -- implemented as
a message queue managed and protected by the kernel.

 - Basic object reference mechanism in MACH.

 - Ports are used to refer to objects; operations on objects are
requested by sending messages to the ports which represent them.

Distributed Operating System

Contd..
 A port set is a group of ports, implemented as a queue

combining the message queues of the constituent ports.

 - A thread may use a port set to receive a message sent to any of several

 ports.

 A message is a typed collection of data objects used in
communication between threads.

 - Can by of any size and may contain inline data, pointers to data,

 and capabilities for ports.

 A memory object is a secondary storage object that is mapped
into a task's virtual memory.

 - memory object is treated like any other object.

Distributed Operating System

Differences

 Ports are a protected entity that can only be addressed by the
Mach microkernel,

 Port rights are attached to a given task and describe the
operations that they can provide on a port,

 Port names are the identifiers that tasks must use to request
some operations on this ports.

 This looks similar to - Files, files access rights and file
descriptors in a traditional UNIX system.

Distributed Operating System

ASSIGNMENT

 Q: What is MACH?

Distributed Operating System

